3 resultados para Promoter Regions

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small transcriptional factor involved in cell development and oncogenesis. It contains three "AT-hook" DNA binding domains, which specifically recognize the minor groove of AT-rich DNA sequences. It also has an acidic C-terminal motif. Previous studies showed that HMGA2 mediates all its biological effects through interactions with AT-rich DNA sequences in the promoter regions. In this dissertation, I used a variety of biochemical and biophysical methods to examine the physical properties of HMGA2 and to further investigate HMGA2's interactions with AT-rich DNA sequences. The following are three avenues perused in this study: (1) due to the asymmetrical charge distribution of HMGA2, I have developed a rapid procedure to purify HMGA2 in the milligram range. Preparation of large amounts of HMGA2 makes biophysical studies possible; (2) Since HMGA2 binds to different AT-rich sequences in the promoter regions, I used a combination of isothermal titration calorimetry (ITC) and DNA UV melting experiment to characterize interactions of HMGA2 with poly(dA-dT) 2 and poly(dA)poly(dT). My results demonstrated that (i) each HMGA2 molecule binds to 15 AT bp; (ii) HMGA2 binds to both AT DNAs with very high affinity. However, the binding reaction of HMGA2 to poly(dA-dT) 2 is enthalpy-driven and the binding reaction of HMGA2 with poly(dA)poly(dT) is entropy-driven; (iii) the binding reactions are strongly depended on salt concentrations; (3) Previous studies showed that HMGA2 may have sequence specificity. In this study, I used a PCR-based SELEX procedure to examine the DNA binding specificity of HMGA2. Two consensus sequences for HMGA2 have been identified: 5'-ATATTCGCGAWWATT-3' and 5'-ATATTGCGCAWWATT-3', where W represents A or T. These consensus sequences have a unique feature: the first five base pairs are AT-rich, the middle four to five base pairs are GC-rich, and the last five to six base pairs are AT-rich. All three segments are critical for high affinity binding. Replacing either one of the AT-rich sequences to a non-AT-rich sequence causes at least 100-fold decrease in the binding affinity. Intriguingly, if the GC-segment is substituted by an AT-rich segment, the binding affinity of HMGA2 is reduced approximately 5-fold. Identification of the consensus sequences for HMGA2 represents an important step towards finding its binding sites within the genome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demise of reef-building corals potentially lies on the horizon, given ongoing climate change amid other anthropogenic environmental stressors. If corals cannot acclimatize or adapt to changing conditions, dramatic declines in the extent and health of the living reefs are expected within the next half century. The primary and proximal global threat to corals is climate change. Reef-building corals are dependent upon a nutritional symbiosis with photosynthetic dinoflagellates belonging to the group Symbiodinium. . The symbiosis between the cnidarian host and algal partner is a stress-sensitive relationship; temperatures just 1°C above normal thermal maxima can result in the breakdown of the symbiosis, resulting in coral bleaching (the loss of Symbiodinium and/or associated photopigments) and ultimately, colony death. As ocean temperatures continue to rise, corals will either acclimatize or adapt to changing conditions, or will perish. By experimentally preconditioning the coral Acropora millepora via sublethal heat treatment, the coral acquired thermal tolerance, resisting bleaching during subsequent hyperthermal stress. The complex nature of the coral holobiont translates to multiple possible explanations for acclimatization: acquired thermal tolerance could potentially originate from the host itself, the Symbiodinium, or from the bacterial community associated with the coral. By examining the type of in hospite Symbiodinium and the bacterial community prior acclimation and after thermal challenge, it is shown that short-term acclimatization is not due to a distinct change in the dinoflagellate or prokaryote community. Though the microbial partnerships remain without considerable flux in preconditioned corals, the host transcriptome is dynamic. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments, showing a modulated transcriptomic response to stress. Additionally several genes were upregulated in association with thermal tolerance, including antiapoptotic genes, lectins, and oxidative stress response genes. Upstream of two of these thermal tolerance genes, inhibitor of NFκB and mannose-binding lectin, DNA polymorphisms were identified which vary significantly between the northern and southern Great Barrier Reef. The impact of these mutations in putative promoter regions remains to be seen, but variation across thermally-disparate geography serves to generate hypotheses regarding the role of regulatory element evolution in a coral adaptation context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcription by RNA polymerase can induce the formation of hypernegatively supercoiled DNA both in vivo and in vitro. This phenomenon has been explained by a “twin-supercoiled-domain” model of transcription where a positively supercoiled domain is generated ahead of the RNA polymerase and a negatively supercoiled domain behind it. In E. coli cells, transcription-induced topological change of chromosomal DNA is expected to actively remodel chromosomal structure and greatly influence DNA transactions such as transcription, DNA replication, and recombination. In this study, an IPTG-inducible, two-plasmid system was established to study transcription-coupled DNA supercoiling (TCDS) in E. coli topA strains. By performing topology assays, biological studies, and RT-PCR experiments, TCDS in E. coli topA strains was found to be dependent on promoter strength. Expression of a membrane-insertion protein was not needed for strong promoters, although co-transcriptional synthesis of a polypeptide may be required. More importantly, it was demonstrated that the expression of a membrane-insertion tet gene was not sufficient for the production of hypernegatively supercoiled DNA. These phenomenon can be explained by the “twin-supercoiled-domain” model of transcription where the friction force applied to E. coli RNA polymerase plays a critical role in the generation of hypernegatively supercoiled DNA. Additionally, in order to explore whether TCDS is able to greatly influence a coupled DNA transaction, such as activating a divergently-coupled promoter, an in vivo system was set up to study TCDS and its effects on the supercoiling-sensitive leu-500 promoter. The leu-500 mutation is a single A-to-G point mutation in the -10 region of the promoter controlling the leu operon, and the AT to GC mutation is expected to increase the energy barrier for the formation of a functional transcription open complex. Using luciferase assays and RT-PCR experiments, it was demonstrated that transient TCDS, “confined” within promoter regions, is responsible for activation of the coupled transcription initiation of the leu-500 promoter. Taken together, these results demonstrate that transcription is a major chromosomal remodeling force in E. coli cells.